

SMART MATERIALS FOR RENEWABLE ENERGY APPLICATIONS

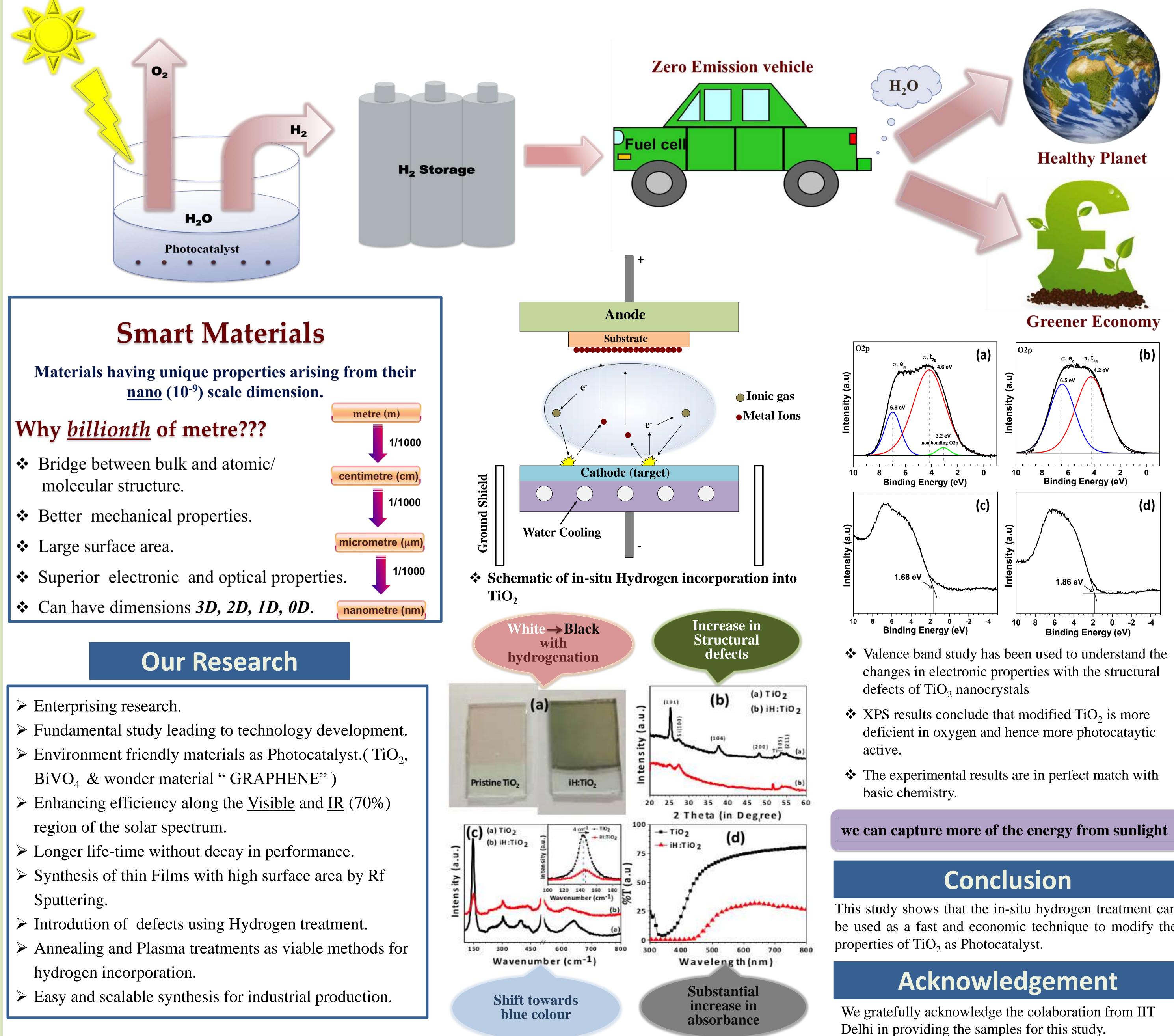
A. Dey¹, A.P. Singh², S. Krishnamurthy¹

¹ Nanoscale Energy and Surface Engineering, Department of Engineering and Innovation, The Open University, Milton Keynes,MK7 6AA

² Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India

Aim/Big Picture

- > Increasing impact of solar energy on economy.
- > Ecofriendly and low cost devices.
- > Decrease in greenhouse emission.
- > Achieving an energy-efficient Europe


EU Framework 2030

- **Greenhouse gas emissions 40% lower than 1990** •
- 27% of energy from renewables •
- 27% increase in energy efficiency •

EU Mission 2050

Emissions to 80% below 1990 levels.

PhotoCatalytic H₂ Evolution

This study shows that the in-situ hydrogen treatment can

be used as a fast and economic technique to modify the

Delhi in providing the samples for this study.

Contact

Avishek Dey The Open University Email: Avishek.Dey@open.ac.uk Phone: +44(0)1908654879 Mobile: +44(0)7474842551

References

- 1. Fang, D.; Huang, K.; Liu, S.; Huang, J. Fabrication and Photoluminiscent Properties of Titanium Oxide Nanotube Arrays. J. Braz. Chem. Soc. 2008, 19, 1059-1064.
- 2. Tonomura, O.; Sekiguchi, T.; Inada, N.; Hamada, T.; Miki, H.; Torii, K. Band Engineering of Ru/Rutile-TiO₂/Ru Capacitors by Doping Cobalt to Suppress Leakage Current. J. Electrochem. Soc. 2012, 159, G1-G5.
- 3. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide. *Nanocrystals. Science* 2011, 331, 746–750.
- 4. Berger, T. et al. Light-induced charge separation in anatase TiO₂ particles. J. Phys. Chem. B 2005,109, 6061–8.
- 5. Luciu, I., Bartali, R. & Laidani, N. Influence of hydrogen addition to an Ar plasma on the structural properties of TiO_{2-x} thin films deposited by RF sputtering. J. Phys. D. Appl. Phys. 2012 45, 345302.

Publication

Singh, A. P., Kodan, N., Dey, A., Krishnamurthy, S. & Mehta, B. R. Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films. Int. J. Hydrogen Energy (2015).